

Seminário OGTC

Optimization, Graph Theory and Combinatorics

27 de novembro de 2019 (15h00-16h00 — Sala 11.3.21)

On the minimal \mathcal{D}_{α} - spectral radius of graphs subject to fixed connectivity

Germain Pastén Tabilo

Universidad Católica del Norte (UCN), Antofagasta Chile

Resumo

For a connected graph G and $\alpha \in [0,1]$, let $\mathcal{D}_{\alpha}(G)$ be the matrix

$$\mathcal{D}_{\alpha}(G) = \alpha \operatorname{Tr}(G) + (1 - \alpha)\mathcal{D}(G),$$

where $\mathcal{D}(G)$ is the distance matrix of G and Tr(G) is the diagonal matrix of its vertex transmissions. Let K_m be a complete graph of order m. For n, s fixed, n > s, let $G_p = K_s \vee (K_p \cup K_{n-s-p})$ be the graph obtained from K_s and $K_p \cup K_{n-s-p}$ and the edges connecting each vertex of K_s with every vertex of $K_p \cup K_{n-s-p}$. This talk is about some extremal results on the spectral radius of $\mathcal{D}_{\alpha}(G)$ that generalize previous results on the spectral radii of the distance matrix and distance signless Laplacian matrix. Among all connected graphs G on n vertices with a vertex/edge connectivity at most s, it is proved that

- 1. there exists a unique $\underline{\alpha} \in (\frac{3}{4}, \frac{3n-s}{4n-2s})$ such that if $\alpha \in [0, \underline{\alpha})$ then the minimal spectral radius of $\mathcal{D}_{\alpha}(G)$ is uniquely attained by $G = G_1$,
- 2. there exists a unique $\overline{\alpha} \in (\frac{3}{4}, \frac{3n-s}{4n-2s}), \overline{\alpha} \ge \underline{\alpha}$, such that if $\alpha \in (\overline{\alpha}, 1)$ then the minimal spectral radius of $\mathcal{D}_{\alpha}(G)$ is uniquely attained by $G = G_{\lfloor \frac{n-s}{2} \rfloor}$, and
- 3. if $\alpha = 1$ then the minimal spectral radius of Tr(G) is $n 1 + \lceil \frac{n-s}{2} \rceil$ and it is uniquely attained by $G = G_{\lfloor \frac{n-s}{2} \rfloor}$.

Joint work with:

Oscar Rojo Departamento de Matemáticas, Universidad Católica del Norte, Antofagasta, Chile.

Supported by Project Fondecyt Regular 1170313, Chile. e-mail: orojo@ucn.cl

Roberto C. Díaz Departamento de Matemáticas, Universidad Católica del Norte, Antofagasta, Chile. Supported by Conicyt-Fondecyt de Postdoctorado 2017 N^o 3170065, Chile. e-mail: rdiaz01@ucn.cl

Germain Pastén Tabilo is partially supported by CONICYT-PFCHA/Doctorado Nacional/2017-21170391, Chile. e-mail: gpastentabilo@gmail.com

This seminar was supported through CIDMA and the Portuguese Foundation for Science and Technology (FCT-Fundação para a Ciência e a Tecnologia), within project UID/MAT/04106/2019.

