

DOUBLE SEMINAR

Grupo de Análise Funcional e Aplicações Functional Analysis and Applications Group

Convolution equations on the Lie group G = (-1, 1) and their applications

Roland Duduchava

The University of Georgia & A. Razmadze Mathematical Institute, Georgia

Abstract

For each Lie group G equiped with a manifold and the group operation (multiplication or sum $x \circ y$, inverse element, neutral element) there exists the unique left or right invariant Haar measure $d_G x$, homeomorphism c(x) : $G \to \hat{G}$ to an unitary group \hat{G} , called the representation of the Lie group G and, finally, perhaps the most important, the Fourier transformation \mathcal{F}_G , which is an isomorphism of the Lebesgue-Hilbert spaces \mathcal{F}_G : $\mathbb{L}_2(G) \to \mathbb{L}_2(\hat{G})$, with the inverse transformation \mathcal{F}_{G}^{-1} . Most interesting in applications are convolution equations on different Lie groups

$$W_a^0\varphi(x) := \mathcal{F}_G^{-1}a\mathcal{F}_G\varphi(x) = c\varphi(x) + \int_G k(x \circ y^{-1})\varphi(y)d_Gy = f(x), \qquad x \in G.$$
(1)

where the Fourier transform of the kernel $a(\xi) = c + (\mathcal{F}_G k)(\xi)$, $\xi \in \hat{G}$ is called the symbol. Under certain conditions equation (1) has a unique solution $\varphi(x) = (W^0_{a^{-1}}f)(x)$. To such equations belong celebrated classical convolution equations of Wiener-Hopf on the axes $\mathbb{R} = (-\infty, \infty)$, of Mellin equations on the half axes $\mathbb{R}^+ = (0, \infty)$ and Töplitz equations on the grid of integers $\mathbb{Z} = \{0, \pm 1, \pm 2, \cdots\}$. These equations have ample of applications in problems of Mathematical Physics, Probability theory, Elasticity theory etc. I will speak about a Lie algebra-interval G = (-1, 1), which is equiped with the group operation $x \circ y := (x + y)(1 + xy)^{-1}$, $x, y \in G$. The invariant Haar measure is $d_G x := (1 - x^2)^{-1} dx$ and the Fourier transformation

$$(\mathcal{F}_{\mathcal{G}}v)(\xi) := \int_{-1}^{1} \left(\frac{1-y}{1+y}\right)^{i\xi} \frac{v(y)dy}{1-y^2} = \int_{-1}^{1} \left(\frac{1-y}{1+y}\right)^{i\xi} v(y)d_G y, \qquad \xi \in \mathbb{R}.$$
 (2)

These tools allow to solve exactly convolution integro-equations on this group

$$\sum_{k=0}^{n} \left[a_k \mathfrak{D}^k u(t) - b_k \int_{-1}^{1} \left(\frac{1-\tau^2}{1-t^2} \right)^{\alpha_k} \frac{\mathfrak{D}^k u(\tau) d\tau}{\tau-t} \right] = f(t), \qquad a_k, b_k, \alpha_k \in \mathbb{C}, \quad t \in \mathcal{J},$$
(3)

where $\mathfrak{D}u(x) := -(1-x^2)\frac{d}{dx}u(x)$ is the natural derivative of functions on the group G (the generator of the Lie algebra) and $(\mathcal{F}_G\mathfrak{D}) = -2i\xi$, $\xi \in \mathbb{R}$. It turned out that to the class of convolution equations (3) belong the following celebrated airfoil (Prandtl) equation with important applications

$$\mathbf{P}u(x) = \frac{c_0 u(x)}{1 - x^2} + \frac{c_1}{\pi i} \int_{-1}^1 \frac{u'(y)dy}{y - x} = f(x), \qquad x \in \mathcal{J}$$
(4)

Also singular Tricomi and Lavrentjev-Bitsadze equation, which emerge in solving partial differential equations of mixed type. Moreover, Laplace-Beltrami equation on the unit sphere in $\mathbb{S}^2 \subset \mathbb{R}^3$ is also a G-convolution operator with a parameter. In conclusion we touch recent results obtained in collaboration with Duván Cardona, Arne Hendrickx & Michael Ruzhansky (Ghent University, Belgium) concerning Global pseudo-differential operators on the Lie group (cube) $G = (-1, 1)^n$.

Mixed type boundary value problems for the Helmholtz equation in a model 2D double angular domain

Margarita Tutberidze

Institute of Mathematics of the University of Georgia, Tbilisi, Georgia

Abstract

The purpose of the present research is to investigate model mixed boundary value problems for the Helmholtz equation in a model 2D double angular domains $\Omega_{\alpha} \subset \mathbb{R}^2$ of magnitude α and $\Omega_{-\beta} \subset \mathbb{R}^2$ of magnitude β , where $\alpha, \beta > 0$. The BVP is considered in a non-classical setting, when solutions are sought in the Bessel potential spaces $\mathbb{H}_p^s(\Omega_{\alpha})$, s > 1/p, 1 . The problems are investigated using the potential method by reducing them to an equivalent boundary integral $equation (BIE) in the Sobolev-Slobodečkii space on a semi-infinite axes <math>\mathbb{W}_p^{s-1/p}(\mathbb{R}^+)$, which is of Mellin convolution type. By applying the recent results on Mellin convolution equations in Bessel potential spaces obtained by V. Didenko & R. Duduchava in [2], explicit conditions of the unique solvability of this BIE in the Sobolev-Slobodečkii $\mathbb{W}_p^r(\mathbb{R}^+)$ and Bessel potential $\mathbb{H}_p^r(\mathbb{R}^+)$ spaces for arbitrary r are found and used to write explicit conditions for the Fredholm property and unique solvability of the initial model BVPs for the Helmholtz equation in the above mentioned non-classical setting. These results, together with the results of the paper [3], where the model Dirichlet and Neumann BVPs in angular domains are investigated, will be used in a forthcoming paper to derive unique solvability criteria for mixed boundary value problems for the Laplace-Beltrami equation on a hypersurface $C \subset \mathbb{R}^3$ with the Lipschitz boundary $\Gamma = \partial C$.

References

- [1] T. Buchukuri, R. Duduchava, D. Kapanadze and M. Tsaava, Localization of a Helmholtz boundary value problem in a domain with piecewise-smooth boundary, Proc. A. Razmadze *Math. Inst,* 162, 37-44, (2013).
- [2] V. Didenko and R. Duduchava, Mellin convolution operators in Bessel potential spaces with admissible meromorphic kernels. *Journal of Analysis and Applications* 443, 2016, 707-731.
- [3] R. Duduchava, M. Tsaava, Mixed boundary value problems for the Laplace-Beltrami equation. *Complex Variables and Elliptic Equations*, **63**, 10, 2018, 1468-1496

Room 11.2.21 October 19, 2022 - 15:00

This seminar is supported in part by the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia), through CIDMA - Center for Research and Development in Mathematics and Applications, within project UIDB/04106/2020.

