
DMat
Universidade de Aveiro

DOUBLE SEMINAR

Grupo de Análise Funcional e Aplicações
Functional Analysis and Applications Group

Convolution equations on the Lie group G = (−1, 1) and their
applications

Roland Duduchava
The University of Georgia & A. Razmadze Mathematical Institute, Georgia

Abstract

For each Lie group G equiped with a manifold and the group operation (multiplication or sum x ◦ y, inverse element,

neutral element) there exists the unique left or right invariant Haar measure dGx, homeomorphism c(x) : G → Ĝ to

an unitary group Ĝ, called the representation of the Lie group G and, finally, perhaps the most important, the Fourier

transformation FG, which is an isomorphism of the Lebesgue-Hilbert spaces FG : L2(G) → L2(Ĝ), with the inverse

transformation F−1
G . Most interesting in applications are convolution equations on different Lie groups

W 0
aφ(x) := F−1

G aFGφ(x) = cφ(x) +

∫
G

k(x ◦ y−1)φ(y)dGy = f(x), x ∈ G. (1)

where the Fourier transform of the kernel a(ξ) = c + (FGk)(ξ), ξ ∈ Ĝ is called the symbol. Under certain conditions

equation (1) has a unique solution φ(x) = (W 0
a−1f)(x). To such equations belong celebrated classical convolution

equations of Wiener-Hopf on the axes R = (−∞,∞), of Mellin equations on the half axes R+ = (0,∞) and Töplitz

equations on the grid of integers Z = {0,±1,±2, · · · }. These equations have ample of applications in problems of

Mathematical Physics, Probability theory, Elasticity theory etc. I will speak about a Lie algebra-interval G = (−1, 1),

which is equiped with the group operation x ◦ y := (x + y)(1 + xy)−1, x, y ∈ G. The invariant Haar measure is

dGx := (1− x2)−1dx and the Fourier transformation

(FGv)(ξ) :=

∫ 1

−1

(
1− y

1 + y

)iξ
v(y)dy

1− y2
=

∫ 1

−1

(
1− y

1 + y

)iξ

v(y)dGy, ξ ∈ R. (2)

These tools allow to solve exactly convolution integro-equations on this group

n∑
k=0

[
akD

ku(t)− bk

∫ 1

−1

(
1− τ2

1− t2

)αk Dku(τ)dτ

τ − t

]
= f(t), ak, bk, αk ∈ C, t ∈ J , (3)

where Du(x) := −(1−x2)
d

dx
u(x) is the natural derivative of functions on the group G (the generator of the Lie algebra)

and (FGD) = −2iξ, ξ ∈ R. It turned out that to the class of convolution equations (3) belong the following celebrated

airfoil (Prandtl) equation with important applications

Pu(x) =
c0u(x)

1− x2
+

c1
πi

∫ 1

−1

u′(y)dy

y − x
= f(x), x ∈ J (4)

Also singular Tricomi and Lavrentjev-Bitsadze equation, which emerge in solving partial differential equations of mixed type.

Moreover, Laplace-Beltrami equation on the unit sphere in S2 ⊂ R3 is also a G-convolution operator with a parameter. In

conclusion we touch recent results obtained in collaboration with Duván Cardona, Arne Hendrickx & Michael Ruzhansky

(Ghent University, Belgium) concerning Global pseudo-differential operators on the Lie group (cube) G = (−1, 1)n.
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Abstract

The purpose of the present research is to investigate model mixed boundary value problems for the Helmholtz equation

in a model 2D double angular domains Ωα ⊂ R2 of magnitude α and Ω−β ⊂ R2 of magnitude β, where α, β > 0. The

BVP is considered in a non-classical setting, when solutions are sought in the Bessel potential spaces Hs
p(Ωα), s > 1/p,

1 < p < ∞. The problems are investigated using the potential method by reducing them to an equivalent boundary integral

equation (BIE) in the Sobolev-Slobodečkii space on a semi-infinite axes Ws−1/p
p (R+), which is of Mellin convolution type.

By applying the recent results on Mellin convolution equations in Bessel potential spaces obtained by V. Didenko & R.

Duduchava in [2], explicit conditions of the unique solvability of this BIE in the Sobolev-Slobodečkii Wr
p(R+) and Bessel

potential Hr
p(R+) spaces for arbitrary r are found and used to write explicit conditions for the Fredholm property and

unique solvability of the initial model BVPs for the Helmholtz equation in the above mentioned non-classical setting. These

results, together with the results of the paper [3], where the model Dirichlet and Neumann BVPs in angular domains are

investigated, will be used in a forthcoming paper to derive unique solvability criteria for mixed boundary value problems

for the Laplace-Beltrami equation on a hypersurface C ⊂ R3 with the Lipschitz boundary Γ = ∂C.
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